深神经网络(DNNS)是在存在多路径和非线视线错误的情况下定位全局导航卫星系统(GNSS)的有前途的工具,这是由于它们使用数据建模复杂错误的能力。但是,为GNSS定位开发DNN提出了各种挑战,例如1)由于卫星可见性的变化和,在全球范围内测量和位置值的差异很大而导致的数值和位置值差异很大,数量和位置值差。 3)过度适合可用数据。在这项工作中,我们解决了上述挑战,并通过将基于DNN的校正应用于初始位置猜测,提出了GNSS定位的方法。我们的DNN学会了使用伪残留物和卫星视线向量作为输入来输出位置校正。这些输入和输出值的有限变化可改善我们DNN的数值条件。我们设计了DNN体系结构,以结合可用GNSS测量的信息,这些信息通过利用基于设定的深度学习方法的最新进步,在数量和顺序上不同。此外,我们提出了一种数据增强策略,用于通过随机将初始位置猜测随机减少DNN中的过度拟合。我们首先执行模拟,并在应用基于DNN的校正时显示出初始定位误差的改进。此后,我们证明我们的方法在现实世界数据上的表现优于WLS基线。我们的实施可在github.com/stanford-navlab/deep_gnss上获得。
translated by 谷歌翻译
对于多机器人系统的安全有效运行,通信连接是可取的。尽管最近的文献中已经探讨了用于连接性维持的分散算法,但这些作品中的大多数并没有说明机器人运动和感知不确定性。这些不确定性是实际机器人固有的,并导致机器人偏离其所需位置,这可能会导致连通性丧失。在本文中,我们提出了一种分散的连接维护算法,该算法会计机器人运动和感知不确定性(DCMU)。我们首先为多机器人系统提出了一个新颖的加权图定义,该定义说明了上述不确定性以及现实的连接性约束,例如视线连接性和避免碰撞。接下来,我们设计了一个基于分散梯度的控制器,用于连接维护,在该控制器中,我们得出了计算控件所需的加权图边缘权重的梯度。最后,我们执行多个模拟,以验证机器人运动下的DCMU算法的连接性维持性能并感知不确定性,并与以前的工作相比显示出改进。
translated by 谷歌翻译
机器人间通信使多机器人系统能够有效地协调和执行复杂的任务。因此,维持机器人之间的通信网络的连接对于许多多机器人系统是必不可少的。在本文中,我们提出了一种用于多机器人系统的连接维护的轨迹策划局。我们首先定义加权无向图形以表示系统的连接。与以前的连接维护不同,我们明确地解释了机器人运动和传感不确定性,同时制定图形边缘权重。这些不确定性导致不确定的机器人位置,该位置直接影响系统的连接性。接下来,使用基于乘法器(ADMM)框架的分布式交替方向方法,使用轨迹规划器维持加权未向图的代数连接以上的指定的下限。在这里,我们得出了ADMM优化步骤中所需的Hessian矩阵的近似,以减少计算负荷。最后,提出了仿真结果以统计验证我们的轨迹策划者的连接维护。
translated by 谷歌翻译
We propose an ensemble approach to predict the labels in linear programming word problems. The entity identification and the meaning representation are two types of tasks to be solved in the NL4Opt competition. We propose the ensembleCRF method to identify the named entities for the first task. We found that single models didn't improve for the given task in our analysis. A set of prediction models predict the entities. The generated results are combined to form a consensus result in the ensembleCRF method. We present an ensemble text generator to produce the representation sentences for the second task. We thought of dividing the problem into multiple small tasks due to the overflow in the output. A single model generates different representations based on the prompt. All the generated text is combined to form an ensemble and produce a mathematical meaning of a linear programming problem.
translated by 谷歌翻译
This paper presents a safety-critical locomotion control framework for quadrupedal robots. Our goal is to enable quadrupedal robots to safely navigate in cluttered environments. To tackle this, we introduce exponential Discrete Control Barrier Functions (exponential DCBFs) with duality-based obstacle avoidance constraints into a Nonlinear Model Predictive Control (NMPC) with Whole-Body Control (WBC) framework for quadrupedal locomotion control. This enables us to use polytopes to describe the shapes of the robot and obstacles for collision avoidance while doing locomotion control of quadrupedal robots. Compared to most prior work, especially using CBFs, that utilize spherical and conservative approximation for obstacle avoidance, this work demonstrates a quadrupedal robot autonomously and safely navigating through very tight spaces in the real world. (Our open-source code is available at github.com/HybridRobotics/quadruped_nmpc_dcbf_duality, and the video is available at youtu.be/p1gSQjwXm1Q.)
translated by 谷歌翻译
Transformer-based language models have been shown to be highly effective for several NLP tasks. In this paper, we consider three transformer models, BERT, RoBERTa, and XLNet, in both small and large version, and investigate how faithful their representations are with respect to the semantic content of texts. We formalize a notion of semantic faithfulness, in which the semantic content of a text should causally figure in a model's inferences in question answering. We then test this notion by observing a model's behavior on answering questions about a story after performing two novel semantic interventions -- deletion intervention and negation intervention. While transformer models achieve high performance on standard question answering tasks, we show that they fail to be semantically faithful once we perform these interventions for a significant number of cases (~50% for deletion intervention, and ~20% drop in accuracy for negation intervention). We then propose an intervention-based training regime that can mitigate the undesirable effects for deletion intervention by a significant margin (from ~50% to ~6%). We analyze the inner-workings of the models to better understand the effectiveness of intervention-based training for deletion intervention. But we show that this training does not attenuate other aspects of semantic unfaithfulness such as the models' inability to deal with negation intervention or to capture the predicate-argument structure of texts. We also test InstructGPT, via prompting, for its ability to handle the two interventions and to capture predicate-argument structure. While InstructGPT models do achieve very high performance on predicate-argument structure task, they fail to respond adequately to our deletion and negation interventions.
translated by 谷歌翻译
The one-inclusion graph algorithm of Haussler, Littlestone, and Warmuth achieves an optimal in-expectation risk bound in the standard PAC classification setup. In one of the first COLT open problems, Warmuth conjectured that this prediction strategy always implies an optimal high probability bound on the risk, and hence is also an optimal PAC algorithm. We refute this conjecture in the strongest sense: for any practically interesting Vapnik-Chervonenkis class, we provide an in-expectation optimal one-inclusion graph algorithm whose high probability risk bound cannot go beyond that implied by Markov's inequality. Our construction of these poorly performing one-inclusion graph algorithms uses Varshamov-Tenengolts error correcting codes. Our negative result has several implications. First, it shows that the same poor high-probability performance is inherited by several recent prediction strategies based on generalizations of the one-inclusion graph algorithm. Second, our analysis shows yet another statistical problem that enjoys an estimator that is provably optimal in expectation via a leave-one-out argument, but fails in the high-probability regime. This discrepancy occurs despite the boundedness of the binary loss for which arguments based on concentration inequalities often provide sharp high probability risk bounds.
translated by 谷歌翻译
Deep Neural Networks (DNN) are becoming increasingly more important in assisted and automated driving. Using such entities which are obtained using machine learning is inevitable: tasks such as recognizing traffic signs cannot be developed reasonably using traditional software development methods. DNN however do have the problem that they are mostly black boxes and therefore hard to understand and debug. One particular problem is that they are prone to hidden backdoors. This means that the DNN misclassifies its input, because it considers properties that should not be decisive for the output. Backdoors may either be introduced by malicious attackers or by inappropriate training. In any case, detecting and removing them is important in the automotive area, as they might lead to safety violations with potentially severe consequences. In this paper, we introduce a novel method to remove backdoors. Our method works for both intentional as well as unintentional backdoors. We also do not require prior knowledge about the shape or distribution of backdoors. Experimental evidence shows that our method performs well on several medium-sized examples.
translated by 谷歌翻译
Multi-Exit models (MEMs) use an early-exit strategy to improve the accuracy and efficiency of deep neural networks (DNNs) by allowing samples to exit the network before the last layer. However, the effectiveness of MEMs in the presence of distribution shifts remains largely unexplored. Our work examines how distribution shifts generated by common image corruptions affect the accuracy/efficiency of MEMs. We find that under common corruptions, early-exiting at the first correct exit reduces the inference cost and provides a significant boost in accuracy ( 10%) over exiting at the last layer. However, with realistic early-exit strategies, which do not assume knowledge about the correct exits, MEMs still reduce inference cost but provide a marginal improvement in accuracy (1%) compared to exiting at the last layer. Moreover, the presence of distribution shift widens the gap between an MEM's maximum classification accuracy and realistic early-exit strategies by 5% on average compared with the gap on in-distribution data. Our empirical analysis shows that the lack of calibration due to a distribution shift increases the susceptibility of such early-exit strategies to exit early and increases misclassification rates. Furthermore, the lack of calibration increases the inconsistency in the predictions of the model across exits, leading to both inefficient inference and more misclassifications compared with evaluation on in-distribution data. Finally, we propose two metrics, underthinking and overthinking, that quantify the different behavior of practical early-exit strategy under distribution shifts, and provide insights into improving the practical utility of MEMs.
translated by 谷歌翻译
Reinforcement learning (RL) operating on attack graphs leveraging cyber terrain principles are used to develop reward and state associated with determination of surveillance detection routes (SDR). This work extends previous efforts on developing RL methods for path analysis within enterprise networks. This work focuses on building SDR where the routes focus on exploring the network services while trying to evade risk. RL is utilized to support the development of these routes by building a reward mechanism that would help in realization of these paths. The RL algorithm is modified to have a novel warm-up phase which decides in the initial exploration which areas of the network are safe to explore based on the rewards and penalty scale factor.
translated by 谷歌翻译